首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10248篇
  免费   2649篇
  国内免费   1042篇
测绘学   111篇
大气科学   286篇
地球物理   7734篇
地质学   3639篇
海洋学   684篇
天文学   30篇
综合类   496篇
自然地理   959篇
  2024年   12篇
  2023年   84篇
  2022年   259篇
  2021年   326篇
  2020年   398篇
  2019年   471篇
  2018年   382篇
  2017年   360篇
  2016年   315篇
  2015年   391篇
  2014年   541篇
  2013年   553篇
  2012年   620篇
  2011年   672篇
  2010年   500篇
  2009年   597篇
  2008年   605篇
  2007年   746篇
  2006年   764篇
  2005年   626篇
  2004年   626篇
  2003年   547篇
  2002年   460篇
  2001年   355篇
  2000年   384篇
  1999年   321篇
  1998年   314篇
  1997年   274篇
  1996年   277篇
  1995年   241篇
  1994年   226篇
  1993年   202篇
  1992年   129篇
  1991年   75篇
  1990年   65篇
  1989年   60篇
  1988年   48篇
  1987年   36篇
  1986年   24篇
  1985年   11篇
  1984年   3篇
  1983年   1篇
  1981年   4篇
  1980年   6篇
  1979年   16篇
  1978年   1篇
  1954年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Deep seawater in the ocean contains a great deal of nutrients. Stommel et al. have proposed the notion of a “perpetual salt fountain” (Stommel et al., 1956). They noted the possibility of a permanent upwelling of deep seawater with no additional external energy source. If we can cause deep seawater to upwell extensively, we can achieve an ocean farm. We have succeeded in measuring the upwelling velocity by an experiment in the Mariana Trench area using a special measurement system. A 0.3 m diameter, 280 m long soft pipe made of PVC sheet was used in the experiment. The measured data, a verification experiment, and numerical simulation results, gave an estimate of upwelling velocity of 212 m/day. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
32.
简要阐述地震小区划在现代城市建设中的重要性以及在实施地震小区划的研究中浅层地震探测的重要作用及其方法原理,并给出应用浅层地震探测在城市地震小区划中的实例。  相似文献   
33.
Several large deployments of neutrally buoyant floats took place within the Antarctic Intermediate (AAIW), North Atlantic Deep Water (NADW), and the Antarctic Bottom Water (AABW) of the South Atlantic in the 1990s and a number of hydrographic sections were occupied as well. Here we use the spatially and temporally averaged velocities measured by these floats, combined with the hydrographic section data and various estimates of regional current transports from moored current meter arrays, to determine the circulation of the three major subthermocline water masses in a zonal strip across the South Atlantic between the latitudes of 19°S and 30°S. We concentrate on this region because the historical literature suggests that it is where the Deep Western Boundary Current containing NADW bifurcates. In support of this notion, we find that a net of about 5 Sv. of the 15–20 Sv that crosses 19°S does continue zonally eastward at least as far as the Mid-Atlantic Ridge. Once across the ridge it takes a circuit to the north along the ridge flanks before returning to the south in the eastern half of the Angola Basin. The data suggest that the NADW then continues on into the Indian Ocean. This scheme is discussed in the context of distributions of dissolved oxygen, silicate and salinity. In spite of the many float-years of data that were collected in the region a surprising result is that their impact on the computed solutions is quite modest. Although the focus is on the NADW we also discuss the circulation for the AAIW and AABW layers.  相似文献   
34.
The sea floor of Fram Strait, the over 2500 m deep passage between the Arctic Ocean and the Norwegian-Greenland Sea, is part of a complex transform zone between the Knipovich mid-oceanic ridge of the Norwegian-Greenland Sea and the Nansen-Gakkel Ridge of the Arctic Ocean. Because linear magnetic anomalies formed by sea-floor spreading have not been found, the precise location of the boundary between the Eurasian and the North American plate is unknown in this region. Systematic surveying of Fram Strait with SEABEAM and high resolution seismic profiling began in 1984 and continued in 1985 and 1987, providing detailed morphology of the Fram Strait sea floor and permitting better definition of its morphotectonics. The 1984 survey presented in this paper provided a complete set of bathymetric data from the southernmost section of the Svalbard Transform, including the Molloy Fracture Zone, connecting the Knipovich Ridge to the Molloy Ridge; and the Molloy Deep, a nodal basin formed at the intersection of the Molloy Transform Fault and the Molloy Ridge. This nodal basin has a revised maximum depth of 5607 m water depth at 79°8.5N and 2°47E.  相似文献   
35.
Salt-water inflows into the Baltic Sea are important events for renewing the deep and bottom waters of the deep basins of the Baltic Sea. These events occur only at irregular intervals. The last strong event was in January 1993 followed by minor inflows in winter 1993/1994. As a result of these inflows, the deep water of the central Baltic basins was completely renewed.Based on extensive observations of polycyclic aromatic hydrocarbons (PAHs) in water, fluffy layer material and surface sediments between 1992 and 1998, the transformation of PAHs and the modification of their distribution in the Baltic deep water is discussed in connection with the spreading of the inflowing highly saline and oxygen-rich water along its pathway from the sills into the central basins. In the course of the inflows in 1993/1994, the PAH concentration in the deep water of the different basins increased significantly. The concentrations were elevated, at least by a factor of 2 and as much as seven to eight times (for the four-ring PAHs) compared to the previous and the following years. Two hypotheses for the causes were discussed: the inflowing salt water may have entrained more highly polluted surface water in the western Baltic Sea, or it may have entrained contaminated fluffy layer material or sediment particles along the route of transport.  相似文献   
36.
Two single-channel seismic (SCS) data sets collected in 2000 and 2005 were used for a four-dimensional (4D) time-lapse analysis of an active cold vent (Bullseye Vent). The data set acquired in 2000 serves as a reference in the applied processing sequence. The 4D processing sequence utilizes time- and phase-matching, gain adjustments and shaping filters to transform the 2005 data set so that it is most comparable to the conditions under which the 2000 data were acquired. The cold vent is characterized by seismic blanking, which is a result of the presence of gas hydrate in the subsurface either within coarser-grained turbidite sands or in fractures, as well as free gas trapped in these fracture systems. The area of blanking was defined using the seismic attributes instantaneous amplitude and similarity. Several areas were identified where blanking was reduced in 2005 relative to 2000. But most of the centre of Bullseye Vent and the area around it were seen to be characterized by intensified blanking in 2005. Tracing these areas of intensified blanking through the three-dimensional (3D) seismic volume defined several apparent new flow pathways that were not seen in the 2000 data, which are interpreted as newly generated fractures/faults for upward fluid migration. Intensified blanking is interpreted as a result of new formation of gas hydrate in the subsurface along new fracture pathways. Areas with reduced blanking may be zones where formerly plugged fractures that had trapped some free gas may have been opened and free gas was liberated.  相似文献   
37.
海底勘查技术的最新发展   总被引:4,自引:0,他引:4  
本文将介绍用于探测海底三维地质特征的海底勘查的最新发展。它主要包括海底地形测绘技术,海底形貌观测技术、海底地层声学探测技术等。  相似文献   
38.
Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.  相似文献   
39.
GPS测高技术在无验潮水深测量中的应用   总被引:8,自引:5,他引:8  
应用双频GPS动态后处理高精度定位技术,建立了一套完整的GPS无验潮海洋深度测量作业模式,通过海上试验与传统作业模式作了数值分析比较,结果表明,该作业模式不仅无需验潮,而且能够有效消除传统作业模式中船只动态吃水和涌浪等因素对测量成果的影响,显著提高水深测量成果的精度。  相似文献   
40.
卢占武  张宏远 《海洋地质前沿》2005,21(4):28-32,i002
20世纪末,地震勘探技术在油气勘探、煤田勘探、工程勘探等多方面的应用都有了突飞猛进的发展。总结了近年来地震勘探在岩性、沉积相、构造体系等不同地质条件下的应用实例,用以说明地震勘探的多用性及其强大的生命力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号